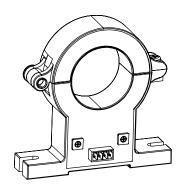


Current Sensor

Model Number:

HK1V 200 H01


HK1V 400 H01

HK1V 600 H01

HK1V 800 H01

HK1V 1000 H01

HK1V 2000 H01

For the electronic measurement of current:DC,AC,pulsed...,with galvanic separation between the primary and the secondary circuit.

Features

- ♦ Open loop sensor using the Hall Effect
- Galvanic separation between primary and secondary
- ♦ Insulating plastic case recognized according to UL 94-V0
- ♦ No insertion loss
- ♦ Small size
- - IEC 60664-1:2020
 - IEC 61800-5-1:2022
 - IEC 62109-1:2010

Applications

- ♦ AC variable speed drives
- ♦ Uninterruptible power supplies (UPS)
- ♦ Static converters for DC motor drives
- ♦ Switch mode power supplies (SMPS)
- ♦ Power supplies for welding applications
- ♦ Battery management
- ♦ Wind energy inverter

Safety

This sensor must be used according to IEC 61800-5-1.

This sensor must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacture's operating instructions.

Caution, risk of electrical shock!

When operating the sensor, certain parts of the module can carry hazardous voltage (e.g., Primary busbar, power supply). Ignore this warning can lead to injury and/or cause serious damage.

This sensor is a built-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Absolute maximum ratings(not operating)

Parameter	Symbol	Unit	Value
Supply voltage	<i>V</i> c	V	± 18
Primary conductor temperature	T _B	$^{\circ}$	100
ESD rating, Human Body Model (HBM)	V_{ESD}	kV	4

X Stresses above these ratings may cause permanent damage.

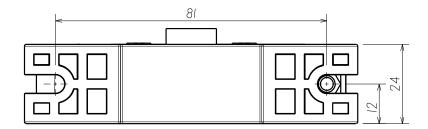
Environmental and mechanical characteristics

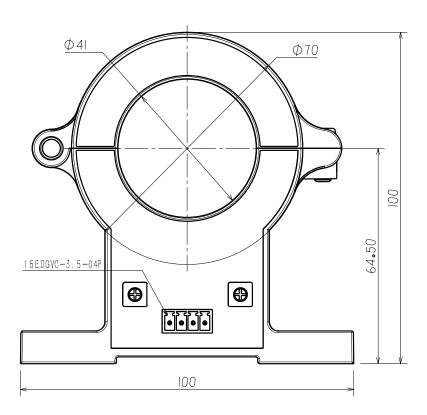
Parameter	Symbol	Unit	Min	Тур	Max	Comment
Ambient operating temperature	T_{A}	$^{\circ}$ C	-40		85	
Ambient storge temperature	T _S	$^{\circ}\!\mathbb{C}$	-40		125	
Mass	т	g		300		

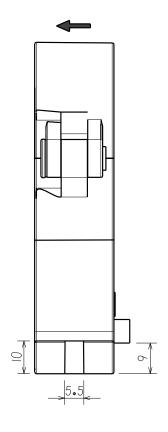
Insulation coordination

Parameter	Symbol	Unit	Value	Comment
Rms voltage for AC insulation test @ 50Hz,1min	$V_{ m d}$	kV	5	
Plastic case	-	-	UL94-V0	
Comparative traking index	CTI	PLC	3	
Application example	1	1	400V	Reinforced insulation,according to IEC 61800-5-1, IEC 62109-1CAT III , PD2
Application example	-	-	800V	Basic insulation,according to IEC 61800-5-1, IEC 62109-1CAT Ⅲ,PD2

X Exposure to absolute maximum ratings for extended periods may degrade reliability.


Electrical data


% With T_A = 25 °C, V_C = ±15V, R_L = 10k Ω ,unless otherwise noted.


Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal rms current	I _{PN}	А	-200		200	HK1V 200 H01
			-400		400	HK1V 400 H01
			-600		600	HK1V 600 H01
			-800		800	HK1V 800 H01
			-1000		1000	HK1V 1000 H01
			-2000		2000	HK1V 2000 H01
	І́РМ	А	-400		400	HK1V 200 H01
			-800		800	HK1V 400 H01
Primary current, measuring range			-1200		1200	HK1V 600 H01
Filliary current, measuring range			-1600		1600	HK1V 800 H01
			-2000		2000	HK1V 1000 H01
			-4000		4000	HK1V 2000 H01
Supply voltage	V c	V	± 12		± 15	@ 5%
Current consumption	Ic	mA		25		
Load resistance	RL	kΩ	10			
Output voltage(Analog)@ IPN	V out	V	± 4.975	± 5.000	± 5.025	
Electrical offset voltage	Voe	mV	-20		20	
Temperature coefficient of V_{OE}	<i>TCV</i> _{OE}	mV/K	-1		1	@ -40℃~85℃
	G_{th}	mV/A		25.0		HK1V 200 H01
				12.5		HK1V 400 H01
Theoretical sensitivity				8.33		HK1V 600 H01
Theoretical sensitivity				6.25		HK1V 800 H01
				5.0		HK1V 1000 H01
				2.5		HK1V 2000 H01
Sensitivity error	$\mathcal{E}_{ ext{G}}$	%	-0.5		0.5	Exclusive of VoE
Temperature of G	TCG	mV/K	-1		1	@ -40℃~85℃
Linearity error 0/PN	\mathcal{E}_{L}	% of <i>I</i> _{PN}	-1		1	Exclusive of V _{OE}
Accuracy@ IPN	X	% of <i>I</i> _{PN}	-1		1	@ -40℃~85℃
Hysteresis offset voltage@/P=0 after1 × I _{PN}	V ом	mV	-20		20	
Response time@ 90% of I _{PN}	t _r	μs			5	
Frequency bandwidth(-1dB)	BW	kHz	10			

Dimensions (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- ♦ General tolerance
- ♦ Connection of secondary

 \diamondsuit

♦ Primary hole

 \diamond

♦ Sensor

±1mm

15EDGVC-3.5-04P

Ф40.5mm

2pc Ф6.0 mm through hole 2pc M6 metal screws

Remarks

- $\Leftrightarrow \quad V_{\rm OUT}$ and $I_{\rm P}$ are in the same direction, when $I_{\rm P}$ flows in the direction of arrow.
- → Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time)are best with a single bar completely filling the primary hole.

This is a standard model. For different applications (measurement, secondary connections...), please contact CHIPSENSE.

Recommended fastening torque 2.1 N•m (±10%)

Doc Ref.: 1800 000 00972 12/03/2024 www.chipsensor.cn